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Some flow visualization experiments on the starting vortex 
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A simple dye in water method has been used to visualize the growth of a two-dimen- 
sional starting flow vortex formed a t  a wedge-like sharp edge. Several cases were tested 
corresponding to different wedge angles and to different values of the time exponent in 
the velocity-time power law describing the starting flow. Photographic sequences 
showing the time-wise primary vortex growth are presented from which various 
secondary-flow details are identified. For the larger wedge angles these include a strong 
secondary vortex and in some cases a small separation bubble-like flow region immed- 
iately adjacent to the wedge apex. For a thin-wedge model the formation of what 
might be interpreted as small rotation centres along the outer turns of the primary- 
vortex shear layer is observed but these are not seen as a manifestation of an instability 
phenomenon in the fluid. Measurements of the trajectories of the primary-vortex 
centre are compared with the predictions of an inviscid similarity theory of the vortex 
growth. Although the appropriate Reynolds number in the present experiments was 
relatively low, comparison between theory and experiments is regarded as reasonable 
with differences being attributed to viscous effects absent in the similarity theory, and 
also to apparatus wall effects. 

1. Introduction 
The formation of a growing vortex from a salient edge in a flow starting from rest is 

well known as the basic mechanism for the initial generation of circulation around 
aerofoils and other bodies. It has been established that the sharp edge fixes the point of 
boundary-layer separation leading to the familiar coherent spiral shear-layer roll-up 
characteristic of vortex development. Although essentially transient, such flows are of 
basic interest as a fundamental means of studying free shear layer and vortex be- 
haviour. Furthermore the vortex formation process is central in understanding the 
structure of vortex rings (Saffmann 1978; Pullin 1979) and the close analogy between 
sharp-edge starting flows and leading-edge separation from slender bodies is well 
known. 

The aluminium particle flow visualizations of Prandtl and Tietjens reproduced in 
Batchelor (1970) are perhaps the first documented photographic evidence of edge 
vortex formation. Later studies of the phenomenon in an incompressible fluid include 
those of Wedemeyer (1956) who observed vortex growth behind a moving flat plate 
and Pierce ( 1961) who employed spark shadowgraph/heated-vapour methods to view 
and measure the growth rates of vortices produced by several geometrical configura- 
tions. Rott (1956) discussed the similarity Iaws relating the initial generally nonlinear 
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growth of the vortex in an inviscid fluid to the edge-forming angle and to the velocity- 
time history of the generating flow. Numerical solutions to the integro-differential 
equation obtained from these laws and which determine the detailed shape of the 
spiral vortex sheet representing the rolled-up shear layer have been presented by 
Blendermann (1969) and Pullin (1978). It becomes apparent that the initial small time 
evolution of the vortex is determined through the expansion of (local form of) the 
outer or generating flow in the vicinity of the sharp edge. For finite but sufficiently high 
Reynolds numbers, the vortex sheet solutions may then themselves be regarded as an 
outer inviscid flow which determines the structure of the inner inviscid rotational core 
and viscous vortex subcore [see Moore & Saffman (1973) for an analysis of this problem 
for a related flow and Pullin (1979) for the application of their results to the edge 
vortex]. After the initial near-edge growth period, the subsequent behaviour of edge 
vortices and of umbilical shear layers joining them to the forming edge can only be 
understood within the context of the overall flow. 

Starting vortices in a compressible fluid flow have been produced and studied using 
the method of shock diffraction. Here the interaction of an incident shock wave with a 
sharp edge at rest with respect to the upstream flow produces a transmitted-reflected 
wave system bounding an after-flow about the edge which generates the vortex. Rott 
(1956) showed that for sufficiently weak incident waves the after-flow may be regarded 
as approximately incompressible near the edge but small density variations still allow 
the use of interferometry (Howard & Matthews 1956) or spark shadowgraph (Evans 
& Bloor 1977) techniques to visualize the vortex formation process and measure vortex 
growth rates. Although Evans & Bloor use an impulsively started model for the after- 
flow in their vortex discretization calculations of the vortex growth, Rott's weak pulse 
approximation clearly indicates that a (time)" power law starting flow is more 
appropriate. The value of m in this special situation depends on the edge angle and is 
just that required in the general inviscid similarity theory to predict an initial growth 
rate linear in time. Some workers, however, for example Reichenbach and Merzkirch 
(1964), have observed an initial nonlinear growth rate preceding an eventual linear 
rate, which may be due to viscous effects very early in the formation process. 

The present experiment was performed with the aim of studying the development of 
the starting vortex for different edge-forming geometries (wedge angles) and several 
velocity-time power-law histories of the generating flow. The experiments were carried 
out in a specially designed water channel in which the starting flow was obtained using 
a high torque stepping motor controlled through computer software. A cine film of the 
dye-in-water patterns produced by the flow was made from which photographic 
sequences showing the flow development and measurements of the time-wise primary 
vortex trajectory were obtained. I n  the following, details of the flow revealed in 
selected photographic sequences are discussed and the measured vortex centre trajec- 
tories are compared with inviscid simliarity theory predictions. 

2. Experimental apparatus 
The experimental apparatus, depicted schematically in figure 1, consisted of a Per- 

spex water channel formed from a tube of rectangular cross-section of height H = 25.4 
cm and width W = 20.3 cm, joined a t  one end to an open reservoir. At the other end 
of the tube the flow was driven by a rectangular piston. The water level in the reservoir 
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FIGURE 1. Experimental apparatus for starting vortex flow visualization experiment. 

always exceeded H so that the tube was always completely full during experimental 
runs. The wedge model was inserted into the channel through a port and was mounted 
with the wedge support plate flush with the inner top face of the tube. Each wedge 
model was in the form of an isosceles triangular prism of height h = 12-70 cm and 
length 1 = 17.8 cm. When in position each end ofthe model was thus separated from the 
adjacent inner side of the tube by a gap of about 1.25 cm designed originally to decrease 
interfelence between the side-wall boundary layer and the wedge-generated flow. The 
vortex-forming model edge (wedge apex) of angle p17 radians intersected the tube axis 
normally ( h / H  = 0.5) and was spaced about 80 cm from the initial piston position and 
30 cm from the tube-reservoir intersection. In  the region of piston movement Wand H 
were toleranced to 0.002 em. The piston was constructed of Perspex sheeting and was 
machined to provide a smooth fit inside the tube. It was 15.3 cm in length and was 
fitted a t  each end with Teflon sealing/lubrication rings which provided the only con- 
tact with the tube walls. Common grease was used to provide further lubrication. 

The piston was driven by a 0-5 in. diameter threaded lead screw with 12 threads/in., 
which was itself driven through a 1 : 1 gear box by a high torque stepping motor with a 
shaft step angle per input drive pulse of 0.9" (400 steps/revolution). The motor could be 
operated either at a constant speed via circuitry in the motor drive box or by an exter- 
nally supplied pulse train. I n  the present experiment the starting flow was obtained by 
generating a motor-driving square wave pulse sequence through software on an on-line 
PDP 11/10 computer. Programmes were written to generate piston velocity-time 
profiles approximated by 

where V, is the piston velocity, t is the time and A and m are pre-chosen constants. The 
nominal values of m chosen were m = 0, 0-25, 0-5 and 1.0. The piston distance-time 
(x, t )  profiles were measured for each m using a video system and are shown in figure 2. 
It was found that the actual x, t profiles obtained did not exactly correspond to 
integration of ( 1 )  with the prechosen A ,  m, presumably owing to accumulation of small 
errors. This was not considered important however, and the approximate actual values 
of wz, A achieved were estimated by fitting curves of best least-square fit of the form 

v, = Atm, (1) 
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t ( s )  

FIGURE 2. Piston position compared with (time).. power laws for parameters A ,  m given in 
table 1 ;  x ,  ?n = 0; 0, m = 0.04; v,  m = 0.24; A, m = 0.45; B, m = 0.88. 

A 
m (cm s--(l+m)) t ,  (8) Re, 

0 0.63 12.52 1560 
0.04 1.30 5.50 3687 
0.24 1.10 5.68 5109 
0.45 0.86 5.96 6621 
0.88 0.38 7.08 6873 

TABLE 1 .  Values of time exponent m, velocity power law constant A ,  flow times t ,  and channel 
Reynolds number Re, for starting flow experiment. 

to the measured x, t profiles. Actual values of A and m are given in table 1 together with 
values of the channel Reynolds number 

In  (3) Re, is based on the length and velocity scales H and H(A/H)l/(l+m) respectively, 
v being the kinematic viscosity of water. In  fact none of the values of m shown can be 
actually achieved owing to infinite accelerations a t  t = 0 but the initial time before (2) 
is approximated is small compared with the duration of the flow. For each case the 
flow was stopped impulsively a t  t = t, (see table 1). 

The flow details were made visible by the use of a readily available household blue 
dye injected into the water through small holes at various points on the centre-lines of 
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each wedge model. A small amount of alcohol was used to make a neutrally buoyant 
readily visible dye mixture. Dye holes were positioned on both the upstream and 
downstream faces of each model a t  distances from the wedge apex which varied with 
the wedge geometry. It was found by trial and error that careful dye injection before 
the commencement of each run in conjunction with very slow residual water motions 
due to previous piston movements induced slow dye movement up the centre-line of 
the two faces of each wedge, forming thin ribbons along the boundaries at  which the 
shed vorticity forms. In  instanta,neous snapshots of the subsequent motion the dye 
trace thus represents flow streaklines. This system, however, did not work well for a 
thin 5" wedge model for which the dye holes could be positioned no closer than about 
4 cm from the apex, Hence, when the first dye reached the shedding edge, the vortex 
was already quite well formed so that the early part of the formation process was not 
seen. For this model, a very slightly negatively buoyant dye was thus used which 
initially formed an approximately vertical ribbon as may be seen in the left photo of 
figure 6 (a).  Instantaneous snapshots then show a combination of streaklines and time- 
lines in the fluid, a timeline being the instantaneous location of a line of particdar 
fluid particles marked (here as the vertical dye ribbon) at a given earlier time. Exper- 
ience with this dye mixture indicated that the slight negative buoyancy had no 
observable effect in the time interval (0 ,  tf) on the flow patterns obtained. The approxi- 
mate two-dimensionality of the flow near the plane of symmetry near the wedge apex 
was established by observing dye released through several holes spaced across the 
wedge model span. 

The starting vortices were filmed on 35 mm black-and-white cine film at  25 frames 
s-l. Since this speed is accurately fixed by the camera motor drive, framing may be 
used as a convenient timing of the flow development. The majority of runs were 
performed with 5" (p = 0.028) and 60" (p = 0.333) wedges although some runs were also 
obtained for a 90" (p = 0.5) wedge. Two near-impulsive runs, m = 0,0.04, were carried 
out on the 60" model to examine two kinematically similar flows a t  different Re,. 

3. Analysis of results 
Two types of results are presented. 
(1) Trajectories of the primary 'vortex centre' obtained directly for each run by 

measurement from frame-by-frame projections of the cine film. 
(2) Photographic sequences comprising prints of selected frameslruns from the 

cine film. 
Each photographic sequence (figures 5-9) reveals the growth of the primary edge 

vortex, together with details of various secondary flow phenomena which can be more 
clearly seen in the selected enlargements of figure 10. The last one 01 two stills in each 
sequence show the formation of a vortex pair near the wedge apex after the flow has 
stopped. These have been included firstly since it was thought that the pair formation 
process was of some interest in itself as a graphic illustration of Kelvin's theorem, and 
secondly to enable the reader to compare the single shear layer starting vortex with the 
double layer stopping vortex. A particularly well-formed vortex pair is depicted in the 
enlargement of figure 11. As may be seen for example from figure 5, the 'vortex centre' 
is in general ill defined. The best definition is perhaps the peak of the vorticity distribu- 
tion in the viscous subcore but since vorticity was not measured we have taken the 
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FIOURE 3. Vertical and horizontal vortex centre positions versus time for p = 0.028 ( 6 O ) ,  
n ~ .  = 0-45. Compared with similarity theory predictions. Measurements: 0, x; 0 ,  y. Theory: 
- , 2; ---, y. 

approximate geometric centre, or centre of flow rotation of the last few turns of the 
vortex streaklines as judged by eye. Figure 3 shows the horizontal x (normal distance 
from the wedge bisector) and vertical y (distance along wedge bisetrix) vortex centre 
positions versus time for /3 = 0.028, m = 0.45 compared with similarity theory pre- 
dictions to be discussed subsequently. 

Neglecting three-dimensional flow effects, the infinite-Reynolds-number limit for 
the starting vortex may be assumed to be that given by the motion of a two-dimen- 
sional spiral vortex sheet shed from the wedge apex. For t sufficiently small such that 
the vortex size is small compared with a typical boundary dimension (say H ) ,  the 
growth of the vortex sheet should follow similarity laws formulated by Prandtl, Rott 
(1956) and other workers. Detailed numerical solutions for the self-similar vortex 
sheet (Pullin 1978) then provide a convenient reference for comparison with the 
measured vortex trajectories. In  these solutions the infinite spiral sheet is represented 
by a few outer turns adjoining the wedge apex and an isolated vortex representing the 
overall effect of the inner, tightly rolled-up portion. We shall compare the calculated 
trajectory of this vortex with the measured vortex centre as described above. 

To relate the similarity solutions to the present geometry, we need only expand the 
outer vortex generating flow in the vicinity of the wedge apex. We assume that a model 
of the outer flow, appropriate to the channel-wedge geometry, is that of attached two- 
dimensionalinviscidincompressible flow down aninfinite duct with the wedge position- 
ed at  some point on the duct top surface. A similar flow model was employed by Evans 
& Bloor (1977) in simulating their shock diffraction flow. For this model with the duct- 
wedge positioned in the z = x + iy plane as in figure 13, it  is shown in the appendix that 
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the first two terms in the expansion near the wedge apex z = 0 + i0, of the complex velo- 
city potential describing the outer flow, are given by 

where a,(/3), al(P) are dimensionless constants shown plotted wersus ,8 in figure 14. The 
first term in (4) represents a singular attached flow past an effectively infinite wedge 
while each subsequent term represents a sum o f j  adjacent nonsingular flows in corners 
of angle 4 2  -/3)/j, j = 3,5,7,  . . . surrounding the wedge. The weighting of successive 
terms in (4) by the real constants ao, a,, . . . accounts for the effect of the duct boundaries 
so that these constants are determined by the overall ductwedge geometry. Note that 
even powers of 1/(2-,8) do not appear in (4) owing to the antisymmetry of the y 
velocity component of the flow about x = 0. The inviscid similarity theory of edge 
vortex growth follows from the assumption that, for small t ,  the vortex evolution is 
dominated by the first term in (4). For our purposes it is convenient to write this term 

( 5 )  
in the form w(z) = - atmeti~(3-B)/(2-P)z1/(2-B), 

where a = ao(/3)AH1-n with n = 1/(2-/3). 

We may now write for the initial trajectory of the vortex centre in a viscous fluid 

that is, we consider the generating flow (outer flow) to be inviscid and given by (5), but 
allow for possible viscous effects in the growing edge vortex (inner flow). Dimensional 
analysis of (6) then leads to a relationship which we may write as 

where 

,,. 

az/(2-n)tzM-1 
Re, = 

V 

with M = ( I  +m) / (2 -n )  and where 9, $ represent the real and imaginary parts 
respectively of a complex argument. In  (7 )  w,(m, n)  is a complex dimensionless con- 
stant which may be obtained from similarity solutions for the edge vortex and f,, f, are 
unknown functions which may also depend on m, n. The scale Reynolds number Be,, or 
non-dimensional time to the power 2M - 1, is based on internal length scales implicit in 
(5). It is the natural Reynolds number for the initial growth of the starting vortex and 
can always be computed provided the near-edge generating flow of the type (4) can be 
found. For the present outer flow, Re, and Re, are related through 

(8) Re, = 4 / ( 2 - % ) [  ( A  /H)l/(l+m)t]2M-lRe C' 

Note that equations (7 )  and (8) may be used to recover the original dimensional results 
from figures 4 (a)-(d) which will now be discussed. 
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FIGURE 4. For legend see facing page. 
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FIQURE 4. Vortex centre positions non-dimensionalized against similarity predictions versus 
Re,. (a ,  c, e)  Horizontal positions. (b ,  d)  Vertical positions. (a, b)  ,8 = 0.028 (5') .  0, m = 0.04; 
v,  m = 0.24; A, m = 0.45; m, m = 0.88. Bars indicate approximate experimental error. 
(c ,d)  ,4 = 0.333 (60'). x ,  m = 0 ;  0, m = 0.04; 8, m = 0.24; A, m = 0.45; 0, m = 0.88. 
(e )  @, envelope of present results; 8, Pierce (1961), 30" wedge, m N 1 ; 0, Evans & Bloor (1977), 
shock diffraction data, 10" wedge, m = 0. 

4. Discussion and conclusions 
Measurements 0€2,, and Qu in the form of (7) are shown in figures 4 (a-e). The values 

of o,,(m, n) used given in table 2 were obtained from the calculations of Pullin (1978). 
For small t and Re,+ co we may assume f,, fg -+ 1 so that (7) represents the similarity 
vortex. Deviations from unity in figures 4 ( a - e )  may then be interpreted as either finite 
Re, effects or the influence of second-order and higher-order terms in (4) distorting the 
growing vortex, that  is, the effect of the channel walls. These two effects are of course 
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p = 0.028 ,Q = 0.333 - - 
m ma") Y ( W J  W(W.) fi(%) 

0 - - 0.318 0.060 
0.04 0.320 0.076 0.306 0.062 
0-24 0.260 0.084 0.254 0.067 
0-45 0.220 0.084 0.217 0.066 
0.88 0.173 0.077 0.170 0.060 

TABLE 2. Values of the complex constant w,  appearing in similarity starting 
vortex solutions (Pullin 1978). 

independent since by moving the piston fast enough (increasing A )  it is possible to 
generate a very high Re, vortex still close to the wedge apex. 

Figures 4 (a, c) show 5?t. versus Re, for the 5" and 60" wedges respectively. Although 
estimates of the experimental error for Re, 5 2000are of the same order as the differences 
between theory and experiment the consistent trend indicates that measurement 
exceeds theory by some 10-20 yo at low Re, for the 60" wedge. For 9, in figures 4 (b ,  d )  
the disagreement is of order 50-100 yo but here relative experimental errors are large 
since yc itself is rather smaller than xv. At low Re, these discrepancies can be attributed 
to finite Re, or viscous effects, notably: 

(1)  The displacement effect on the primary edge vortex of the secondary vortex 
which forms owing to boundary-layer separation on the leeward wedge surface be- 
tween the moving pressure minima induced by the primary vortex and the wedge apex 
(see Smith 1966for a detailed discussion of this effect for the related problem of leading- 
edge separation from a slender delta wing). For the present flow, the extent of this 
vortex can be clearly seen in figure 5 (plate I )  and figure 10a (p = 0.333, m = 0), 
figure 6 (plates 2 and 3) (p = 0.333, m = 0.45, right sequences), figure 7 (plate 4) 
(p  = 0.333, m = 0.04) and figure 8 (plate 5) (p = 0.333, m = 0.88). It is just visible in 
figures 9 (d- f )  (plate 6) (p = 0.5, m = 0.24) but can be seen more clearly for this flow in 
figure 10(b) (plate 7) .  The secondary vortex does not appear in figure 6 (p = 0.028, 
m = 0.45, left-hand sequence) probably because the induced pressure minimum is 
sufficiently close to the wedge apex to inhibit its formation. This may explain the 
superior agreement of xv with the similarity theory in figure 4 (a)  for the 5" wedge. (See 
also figure 11, plate 8.) 

(2) The possibly related phenomenon of a near-apex bubble, that is, a region near 
the wedge apex in which the streamlines form closed loops on a much smaller scale 
than that of the primary vortex. This bubble can be seen clearly in figures 5, 7 and 9 
(see figure 10 for selected enlargements) and in all cases it appears to be about the 
same size as the secondary vortex region. The bubble is not visible in the m = 0.45, 
0.88 flows of figures 6 and 8 (even though quite strong secondary separation is ap- 
parent for p = 0.33) so that it may be associated with near-impulsive flows. A similar 
phenomenon has been observed by Thompson (1975) who used the hydrogen bubble 
technique to view steady flow leading-edge vortex formation on aslender wing of rhom- 
bic cross-section at  Reynolds numbers of order lo4 based on the wing centre-line chord. 
Thompson considers this feature to be a kind of tertiary vortex rotating in the same 
sense as the primary vortex and induced by the secondary separation vortex. It seems 
likely that this bubble lies entirely within the shear layer separating from the sharp 
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edge and may perhaps be seen as a region of approximately constant vorticity near the 
wedge apex. It does not appear in the higher Re, experiments of Pierce (1961) but this 
may be due to the flow visualization method used or to the fairly slender wedges 
employed. 

(3) The effects of finite shear-layer thickness. Simple diffusion arguments may be 
used to show that the ratio of the shear-layer thickness just prior to separation a t  the 
wedge apex to the overall vortex size is given by KReFd.. A very rough estimate of K for 
a particular case, namely m = I - n, indicates that K 21 5 so that for the present flows 
the near-apex shear layer is relatively thick. Since the concept of the separated struc- 
ture as a tightly wound spiral vortex sheet in an otherwise irrotational flow then be- 
comes suspect, certainly on the scale of the shear-layer thickness, the reasonable 
quantitive agreement of the low Re, results with infinite Re, theory is unexpected. It 
seems that potential flow theory works quite well provided that the correct circulation 
distributions ‘in the large’ are maintained. 

At higher Re,, 6, shows a systematic deviation from the similarity theory which can 
be seen clearly in figure 3 and which is also evident in the photo sequences. In figure 5 
for example, the vortex is approximately the same shape but on a different scale in 
figures 5 (ad). In figures 5 (e - f )  it does not increase greatly in size (the rolling-up pro- 
cess has ceased) but movement away from the wedge is evident. This break-down of 
similarity behaviour can be attributed to the influence of the channel boundaries and 
to three-dimensional flow effects. While the latter are difficult to evaluate, it  is clear 
that channel boundary effects can alone lead to deviation from similarity when the 
first term in (4) no longer dominates the near-apex attached flow velocity field so that 
second and subsequent terms begin to influence (in a very complicated way) the vortex 
evolution. An estimate of this effect may be obtained by examining the relative 
magnitude of the first two terms in the expansion of d Wldz near the wedge apex. From 
(4) it  follows that the ratio A of the magnitude of the complex velocity due to the second 
term to that due to the first singular term is A = 3a1/a0(1z1/H)2/(2-fl. Using values of 
a,, a, given in figure 14 we find that for p= 0-028,A = 0.15 for IzI/H -N 0.10, increas- 
ing to A = 0.3 a t  1zI/H -N 0.20. Prom figure 3 it  may be seen that these values of IzI/H 
roughly cover the range of Izvl / H  over which significant deviation from similarity 
begins to occur. 

Figure 4 ( e )  compares the envelope of the present 6, with the much higher Re, results 
of Pierce (1961) and Evans & Bloor (1977). Those of Pierce are only for small time where 
the velocity profile of his moving plate conforms to m N 1.  While we feel that Evans 
& Bloor’s case corresponds more closely to an m = 0.5 flow, they have been reduced as 
m = 0 as they were presented originally in this way. In  figure 12 the similarity theory 
predictions of the vortex sheet shape for two cases are compared with experimental 
dye streakline patterns corresponding to the photographs of figure 10. Even though 
Re, is relatively low in both cases the experimental and theoretical streaklines are quite 
similar. On the experimental facsimile we have superimposed separatrices showing 
suggested critical point patterns (see Perry & Fairlie 1974) for instantaneous stream- 
lines. Note in each case the saddle point at  which the three closed streamline regions 
(primary and secondary vortex and leading-edge bubble) and the outer flow meet. In 
cases where the bubble does not appear, perhaps at higher Re,, this full saddle point 
might well degenerate into a half-saddle separating the primary and secondary vortex 
regions. 



250 D. I .  Pullin and A .  E.  Perry 

0 5 cm 

FIGURE 12. Comparison of (ii) experimental and (i) similarity theory predictions of streaklines 
produced in a starting vortex. (a) /3 = 0.333 (60°),  m = 0, t = 5s,  Re, = 967. ( 6 )  p = 0.5 
(go’), m = 0.25, t = 4s, Re, = 3385. Dashed lines are separatrices showing suggested critical 
point patterns for instantaneous streamlines. A separatrix is an instantaneous streamline joining 
the saddle-points. 

Several workers (e.g. Howard & Matthews (1956), Pierce (1961)) have observed the 
formation of apparent rotation centres at small angular intervals along the rolled-up 
shear layer in the starting vortex. Indeed these ‘small vortices’ are the most salient 
feature of Pierce’s well-known spark shadowgraph photos. Professor P. T. Fink 
(private communication) has also observed a similar phenomenon in unpublished 
photographs of impulsively started flow past a flat plate, but found that it vanished 
when certain sources of apparatus vibration were eliminated. The phenomenon is 
clearly visible in the left-hand sequence of figure 6 (p = 0.028, m = 0.45) and photo- 
graphic sequences of other p = 0.028 flows not presented here indicate that it was 
generally present to a greater or lesser degree for this geometry. The phenomenon 
is suggested by the formation of kinks in the streakline patterns in the p = 0.333 
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sequence of figure 6 and also in figure 7, but is not visible in the lowest Re, sequence of 
figure 5, or in those of figure 9. Evidence that this effect must be associated with 
apparatus vibration in the present experiment is provided by a comparison of figures 
5 (d-e) with figures 7 (a-b). These photo pairs correspond to similar values of p ,  m and 
Re, and therefore to a similar near-edge unperturbed flow, but to different values of A ,  
and thus to different external vibration levels, 

Although we believe that the level of apparatus vibrations in the present experi- 
ments was low by most standards (no formal measurements were taken) vibration was 
inevitably present to some extent, the most likely source being within the stepping 
motor leadlscrew drive coupling mechanism. The frequency range of 1-5 kHz 
associated with the step-wise operation of the stepping motor is perhaps too high to be 
responsible for readily observable unsteady periodic phenomena in the fluid. Although 
solid friction ‘stiction ’ effects were initially present in the piston-tube contact, these 
were subsequently reduced by loosening the fit of the piston in the flume, and by care- 
ful lubrication of contact surfaces. Since the wedge models were not supported a t  their 
sides but only along the tube top surface, apparatus vibration seems most likely to have 
been transmitted to the shear layer through the thin 50 wedge, a conclusion which 
appears to be supported by our photographic evidence. 

The question then remains as to whether the streakline behaviour apparent in 
figure 6 forb = 0.028 actually represents the formation of ‘discrete vortices ’ within the 
shear layer as a manifestation of the stability properties of the layer. A strong case for 
extreme caution in such an interpretation has been presented by Hama (1962). Hama 
has shown that streaklines in a ‘ tanh-type ’ shear-layer velocity profile perturbed by an 
unamplified travelling sinusoidal-velocity wave may have the appearance of amplifi- 
cation and roll up as if to indicate the formation of discrete vortices, when in fact no 
such roll-up or vorticity concentrations are present. Computed critical layer (that level 
in the shear layer where the mean fluid velocity and the wave propagation speed are 
equal) streaklines shown in figures 2-4 of Hama’s paper bear a marked resemblance to 
the pattern of streaklines from the 5’ wedge apex in figure 6 and also to those in Pierce’s 
(1961) photographs. The appearance of these patterns then does not necessarily 
indicate a shear-layer instability but may be interpreted alternatively as complex 
streakline behaviour in an apparatus-induced neutrally perturbed flow. 

The analysis of Moore (1975) indicates that the infinite Re, asymptotic form of the 
spiral vortex sheet generated by a starting flow is stable to small two-dimensional 
disturbances. The stabilizing mechanism absent in plane shear layers is stretching of 
the vortex sheet along its length due to the local strain field applied by the overall 
flow. Therelevance of this analysis to the presentflows is somewhat doubtful however, 
since the perhaps important effects of finite shear-layer thickness and local compression 
of the vortex sheet along its outer turns (indicated by the calculations of Pullin (1978)) 
are not included. We nevertheless conclude that Hama’s (1962) interpretation of the 
streakline behaviour might be considered as an alternative to the stability interpreta- 
tion thus indicating that the edge-generated shear layer may be stable in the large, 
at least in the sense that it does not tend to break up into ‘discrete vortices’. Future 
investigations of finite shear-layer stabilitywhich include forcing function effects may 
throw further light on this question. 
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Note added in revision 
A referee has pointed out that there is an apparent periodicity associated with ye 

in figure 3. Re-examination of our raw data showed that a similar periodicity may have 
been present for other cases, positive identification being rather difficult owing to large 
relative experimental errors for this quantity. If real, we can offer no suitable explana- 
tion for this phenomenon, It may be also attributed to apparatus vibration, but this 
seems unlikely. 

Appendix. Expansion of the channel flow near the wedge apex 
The interior of the region in the x plane bounded by the walls of the infinite two- 

dimensional duct and the wedge surface, denoted by Pl P2 P3 P4 P5 P, in figure 13, may 
be mapped into the upper half g = f;+iq plane through the Schwarz-Christoffel 

transformation 5‘1-8 d5‘ 
(9) 

where K and c are a complex and a real positive constant respectively. Choosing 
suitable branches for the fractional powers in (9) and applying this transformation to 
P4 Pl and P, P6 respectively in the z plane leads to 
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which are sufficient to determine K and c2. Putting IS = h / H ,  expressing the integral 
in (0, co) in (1Oa) in terms of that in ( 0 , l )  in ( l o b )  by integration around an appropriate 
contour in the 6 plane, and eliminating K yields an equation for c2 as 

For /3 = 0 (11) has the solution c2 = 1 + cot2(&Jn). For /3 > 0 numerical solutions to 
(11) were obtained using a Newton-Raphson scheme in conjunction with 24 point 
Gaussian quadrature to evaluate a suitably transformed version of the integral. From 
( l o b )  and (ll), K may then be obtained as 

The complex velocity potential in the 5 plane corresponding to flow in the positive 
2 direction in the z plane channel is 

HAtm 

corresponding to a source of strength 2HAtm at < = c and a sink of strength 2HAtm 
a t  g = -c .  The expansion of the attached flow near the wedge apex may now be 
obtained by combining the expansions of (9) and (13) near 6 = 0 to yield 

where the a, are known functions of K / H  and /3. Using (1 2 )  a, and a1 may be obtained 
as 

Figure 14 shows the variation of a, and al with /3 using values of c2((p) obtained from the 
numerical solutions of (1 1) for IS = 4, which is appropriate to the present geometry. 
Note that, asp-. 1, c+ 1,  a,-+oo. 
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1.8 

1.2 

P 
FIQDRE 14. Variation with of constants a,, a,, in expansion of complex 

potential near wedge apex. 
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FIGURE 5 .  Seyucnco of photos showing dye released from the surface of a wedge into r2 starting- 
stopping flow in water p = 0.333 (GO") ,  m = 0, Re, = 1560. The flaw stopped at t = 12.52 s. 
(a )  t = 1.0 s, Re, = 485; ( b )  t = 3.0 s, Re, = 776; (c) t = 5.0 s, Re, = 967; (d )  t = 7.0 s, Re, = 
1117; ( e )  t = 9.0 s ,  Re,? = 1244; (f) t = 11.0 s, Re, = 1356; (f) t = 13.0 s. 
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FIGURE 6. See plate 3 for the legend. 

Plate 2 
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FIG~JRE 6. Comparison of two photo seqriertcss showing dye roleascd from tho surfaco of a wedgo 
into a starting-stopping flow in water. The soquenccs correspond to the same outer flow with 
m = 0.45, Re, = 6621 bnt different wedge angles (i) /3 = 0.028 ( 5 O ) ,  (ii) p = 0.333 (60"). Times 
t after st,art of flow and Re, are shown. Flow stops a t  t = 5.96 s. Notc in the left-hand seq- 
ueiice the presence of both streaklines from the wedge apex and smoother timelines (see 3 2 for 
definition) may be seen in tho fluid. 
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FIGURE 7 .  Soquonco of photos sliowirig dye rolcased from tho surface of a wedge into a starting- 
stopping flow in water, /Y = 0.333 ((io"), m x 0.04, Re,, = 3687. Flow stops at t = 5.50 8. (a) 
t = 0.6 s ,  Re, = 1090; ( b )  t = 1.0 S ,  Re, = 1397; ( c )  t = 1.6 s ,  Re, = 1744; (d )  t = 2.8 S ,  Re, = 
2302; ( e )  t = 4.0 s ,  Re, = 2739; ( f )  t = 4.8 s ,  Re, = 2993; (9 )  t = 5.28 s, Re, = 3135; (h) t = 
6.0 s. 
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FIGUJ~E 8. Soyuence of photos showing dya released from the surface of a wedge into a starting- 
stopping flow in water, ,8 = 0.333 (60"), rn = 0.88, Re, = 6873. Flow stops a t  t = 7.08 S. (a)  t = 
1.89, Re, = 649; ( b )  t = 2.8 s ,  Re, = 1367; ( c )  t = 4.0 s, Re, = 2455; (d )  t = 5.0 s ,  Re, = 3634; 
( e )  t = 6.0 s, Re, = 4941; (f) t = 6.6 8; Re, = 5802; (9 )  t = 7-0 8, Re, = 6408; (h) t = 7.6 S. 
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FIGURE 9. Sequence of photos showing dye roleased from the surface of a. \voClgo into a startirig- 
stopping flow in water, /” = Q (goo), m = 0.24, Re, = 5109. Flow stops a t  t = 5.68 S. (a) t = 0.6 S ,  

Re, = 662; ( b )  t = 1.0 s, Re, = 1027; ( c )  t = 1.6 s ,  Re, = 1539; ( d )  t = 2.8 s ,  Re, = 2490; 
( e )  t = 4.0 s, Re, = 3385; (f) t = 5.28s, Re, = 4298; (9) t = 5.88 s ;  ( 1 1 )  t = 6.40 S. 
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FIGURE 10. (a)  Enlargement of photo in figure 5 ( c ) :  /J' = 0.333 (60°), rn = 0, Re, = 1560, 
t = A s ,  Re, = 967. ( b )  Enlargement of plioto in figure 9 ( e ) ;  p = (go"), m = 0.24, Re, = 5109, 
t = 4.0 s, Re, = 3385. 
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FIGURE 1 1 ,  Photo of dye in water showing vortex pair formed near wedge in starting-stopping 
flow. The generating flow is that for figure 6 with /J’ = 0.333 ( S O 0 ) ,  rn = 0.45, Re, = 6621. The 
flow was stopped at t = 5.96 s and this photo corresponds to t = 7.285 s. 


